Determinacy, Large Cardinals, and Inner Models

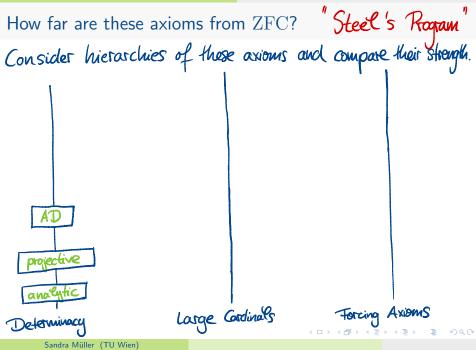
Sandra Müller

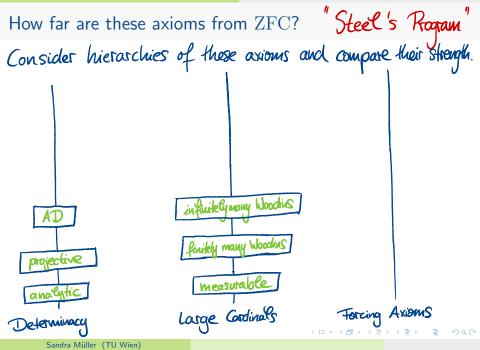
January 2024

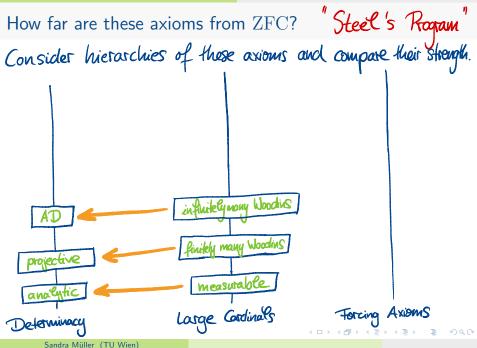
Winterschool 2024, Hejnice

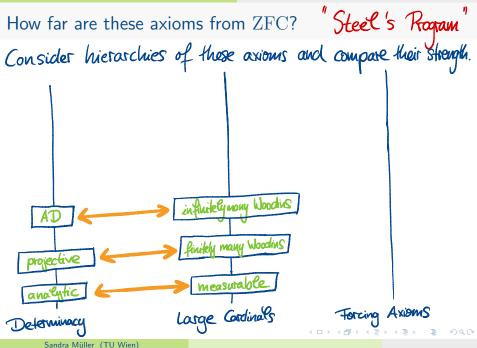
イロト イポト イヨト イヨト

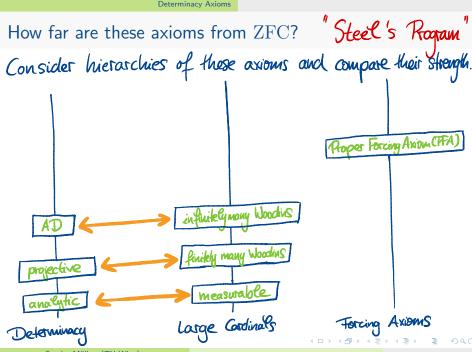
Research supported by Austrian Science Fund (FWF) Elise Richter grant number V844, International Project I6087, and START Prize Y1498.

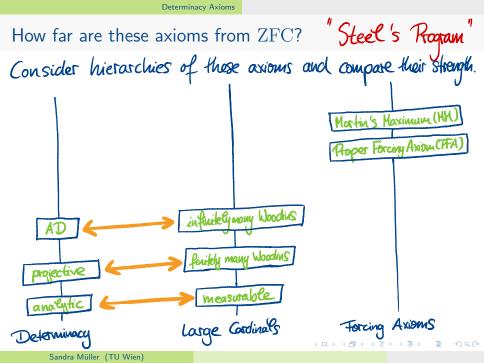


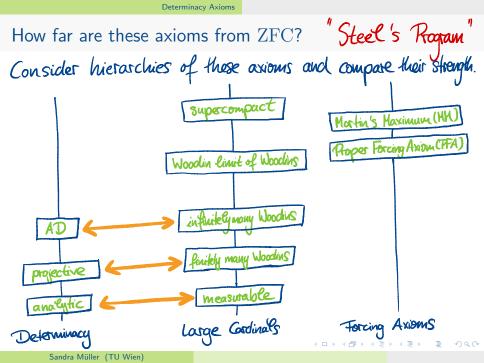


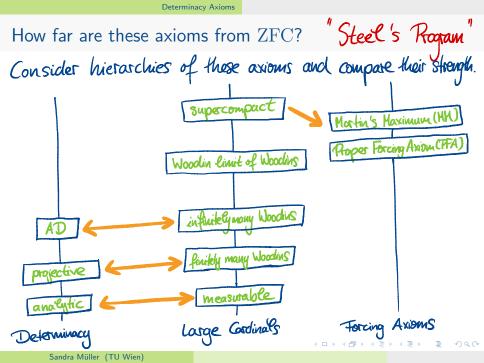


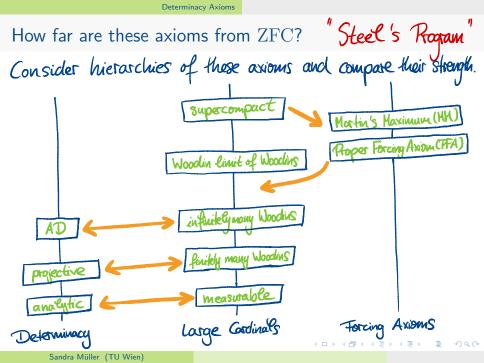


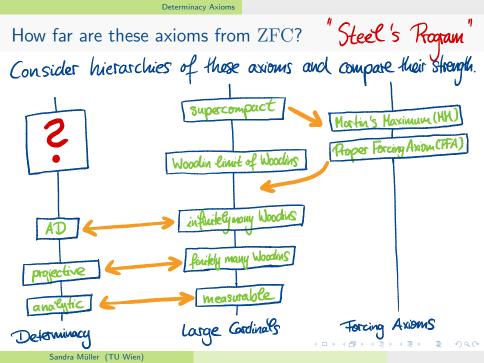






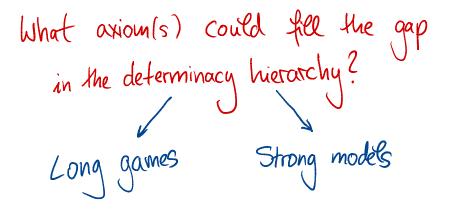






What axiom(s) could fill the gap in the determinacy hierarchy?

What axiom(s) could fill the gap in the determinacy hierarchy? Long games



Long games

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Standord games : I | No Nz ... Long games I T N3 ···· 4,

Standord games:

$$I \stackrel{GN}{h_0} \stackrel{N_2}{n_2} \dots \text{Long games}$$

 $I \stackrel{N_1}{n_3} \stackrel{N_3}{\dots}$

I wins iff
$$(n_0, n_1, \dots) \in A$$
.
 $0/\omega \ I \ wins$.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Long games

I wins iff $(n_0, n_1, \dots) \in A$. $O/w \ I \ wins$.

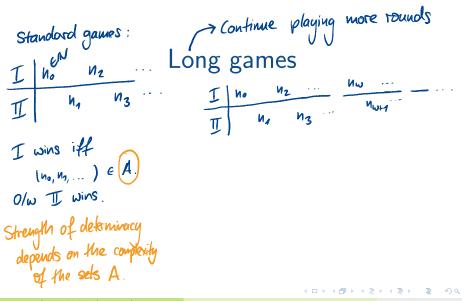
C/W J Strength of determinacy depends on the complexity of the sets A.

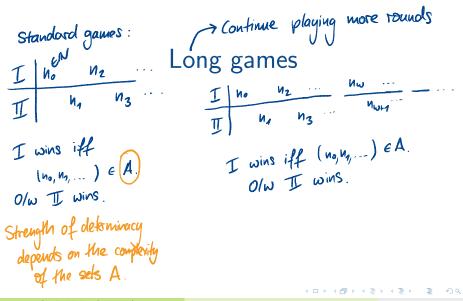
Standard games : Иг ... I how N3 .. 4,

Continue playing more rounds Long games

I wins iff $(n_0, n_1, \dots) \in A$. O/W I wins.

Strength of determinacy depends on the complexity of the sets A.





> Continue playing more rounds Standard games : I how Long games NZ 42 N3 No 4, N1 N3 ... I wins iff $(n_0, n_1, \dots) \in A$. I wins iff $(n_0, n_{1,...}) \in A$. O/w II wins. Strength of determinacy depends on A and on the length of the game. $0/\omega$ I wins. Strength of determinacy depends on the complexity of the sets A.

= ~~~

Continue playing more rounds Long games Standard games : I ho ha ... Nω II h, h₃... И2 ho Π μ, μ3 I wins iff $(n_0, n_{1,\dots}) \in A$. I wins iff $(n_0, n_1, \dots) \in A$. O/w II wins. Strength of determinacy depends on A $0/\omega$ I wins. and on the length of the game. Strength of determinacy depends on the complexity Step 1: Fix a finite number n and play games of length w.n. of the sets A.

Long games Step 1: Fix a finite number n and play games of length w.n.

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ● 臣 - ののの

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Long games
Step 1: Fix a finite number n
and play games of length
$$w \cdot n$$
.
Say $n = 2$ and the payoff set A is T_1^{\prime} .
 \underline{T} ho he ...
 \underline{T} ho he ...
 \underline{T} ho he ...
 \underline{T} ho he ...
 \underline{T} ho he ...

.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Long games
Step 1: Fix a finite number n
and play games of length
$$w \cdot n$$
.
Say $n = 2$ and the payoff set A is T_1^{1} .
 $T = \frac{h_0}{h_1} \frac{h_w}{h_3} \cdots \frac{h_w}{h_{w+1}} \cdots$
Determinacy of this game implies determinacy
of the usual length w game with payoff pA. Use the first w

Long games Step 1: Fix a finite number n and play games of length w.n. Say n=2 and the payeff set A is T_1^2 . Nw 2 No M2 ... h3 ---MwH1 h1 Use the same winning Stranking for the first w Determinacy of this game implies determinacy (of the usual length is game with payoff pA.) noves, to get a witness for (u, u, ...) e pA, play the second round of the longe gave acc to be starty Sandra Müller (TU Wien)

Long games
Step 1: Fix a finite number n
and play games of length
$$\omega \cdot n$$
.
Say $n = 2$ and the payoff set A is T_{1}^{\prime} .
 $T + n_{0} + n_{2} + \frac{h_{\omega}}{h_{0} + n_{1}} + \frac{h_{\omega}}{h_{0} + n_{1}}$.
Determinacy of this game implies determinacy
of the usual length ω game with payoff pA.
Sarda Miller (TU Wer)

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Long games
Step 1: Fix a finite number n
and play games of length w.n.
Step 2: Fix a countable ordinal &
and play games of length w.d.

$$\frac{I | n_0 \cdots | n_w \cdots}{I | n_1 \cdots | n_w \cdots} \text{ resulting in a sequence}$$

$$(n_0, n_1, \dots) \in \omega^{w \cdot d}$$

Games	$\textbf{Det} \Rightarrow \textbf{Mice}$	$\textbf{Mice} \Rightarrow \textbf{Det}$
Analytic, length ω on $\mathbb N$	Martin, 1970	Harrington, 1978
- measurable	cordinals	

イロト イポト イヨト イヨト

Games	$\textbf{Det} \Rightarrow \textbf{Mice}$	$\textbf{Mice} \Rightarrow \textbf{Det}$
Analytic, length ω on $\mathbb N$	Martin, 1970	Harrington, 1978
Projective, length ω on $\mathbb{N},$ level by level	Woodin, appeared in M-Schindler-Woodin, JML 2020	Neeman, 2002, build- ing on Martin-Steel, 1989

- finitely many Woodin aschings with a measurable ontop

Games	$\textbf{Det} \Rightarrow \textbf{Mice}$	$\textbf{Mice} \Rightarrow \textbf{Det}$
Analytic, length ω on $\mathbb N$	Martin, 1970	Harrington, 1978
Projective, length ω on $\mathbb N$, level by level	Woodin, appeared in M-Schindler-Woodin, JML 2020	Neeman, 2002, build- ing on Martin-Steel, 1989
$\sigma ext{-projective, length }\omega$ on $\mathbb N$	Aguilera	Aguilera-M-Schlicht, APAL 2021, Aguilera

- "local" Woodin cardinals

Games	$Det \Rightarrow Mice$	$\textbf{Mice} \Rightarrow \textbf{Det}$
Analytic, length ω on $\mathbb N$	Martin, 1970	Harrington, 1978
Projective, length ω on \mathbb{N} , level by level	Woodin, appeared in M-Schindler-Woodin, JML 2020	Neeman, 2002, build- ing on Martin-Steel, 1989
$\sigma ext{-projective, length }\omega$ on $\mathbb N$	Aguilera	Aguilera-M-Schlicht, APAL 2021, Aguilera
Projective, length ω^2 on $\mathbb N$	Aguilera-M, JSL 2020	Neeman, 2004
-> w+n many Woodin cordinals (for all new)		

Games of countable length $\alpha > \omega$ and games on reals

Games	Det ⇒ Mice	$Mice \Rightarrow Det$
Games		
Analytic, length ω on $\mathbb N$	Martin, 1970	Harrington, 1978
Projective, length ω on $\mathbb{N},$ level by level	Woodin, appeared in M-Schindler-Woodin, JML 2020	Neeman, 2002, build- ing on Martin-Steel, 1989
$\sigma ext{-projective, length }\omega$ on $\mathbb N$	Aguilera	Aguilera-M-Schlicht, APAL 2021, Aguilera
Projective, length ω^2 on $\mathbb N$	Aguilera-M, JSL 2020	Neeman, 2004
Analytic, length ω^{lpha} on $\mathbb N$	Trang, 2013, building on Woodin many Woodin Cardin	Neeman, 2004
-> wa many Woodin cardinals (for d c wy limit)		limit)

Games of countable length $\alpha > \omega$ and games on reals

Games	$\textbf{Det} \Rightarrow \textbf{Mice}$	$\textbf{Mice} \Rightarrow \textbf{Det}$
Analytic, length ω on $\mathbb N$	Martin, 1970	Harrington, 1978
Projective, length ω on \mathbb{N} , level by level	Woodin, appeared in M-Schindler-Woodin, JML 2020	Neeman, 2002, build- ing on Martin-Steel, 1989
$\sigma ext{-projective, length }\omega$ on $\mathbb N$	Aguilera	Aguilera-M-Schlicht, APAL 2021, Aguilera
Projective, length ω^2 on $\mathbb N$	Aguilera-M, JSL 2020	Neeman, 2004
Analytic, length ω^lpha on $\mathbb N$	Trang, 2013, building on Woodin	Neeman, 2004
Projective, length ω^{α} on \mathbb{N}	M, 2020 Many Woodin car	Neeman, 2004 dinas

Games of countable length $\alpha > \omega$ and games on reals

Games	$\mathbf{Det} \Rightarrow \mathbf{Mice}$	$Mice \Rightarrow Det$
Analytic, length ω on $\mathbb N$	Martin, 1970	Harrington, 1978
Projective, length ω on $\mathbb N$, level by level	Woodin, appeared in M-Schindler-Woodin, JML 2020	Neeman, 2002, build- ing on Martin-Steel, 1989
$\sigma ext{-projective, length }\omega$ on $\mathbb N$	Aguilera	Aguilera-M-Schlicht, APAL 2021, Aguilera
Projective, length ω^2 on $\mathbb N$	Aguilera-M, JSL 2020	Neeman, 2004
Analytic, length ω^lpha on $\mathbb N$	Trang, 2013, building on Woodin	Neeman, 2004
Projective, length ω^{lpha} on ${\mathbb N}$	M, 2020	Neeman, 2004
Projective, length ω on ${\mathbb R}$	Aguilera-M, NDJFL 2020	easy from Martin- Steel, 1989

Long games Step 1: Tix a finite number n and play games of length w.n. Step 2: Fix a countable ordinal or and play games of length w.d. Step 3: Play games that end at a countable stage but which one will only be decided during the game.

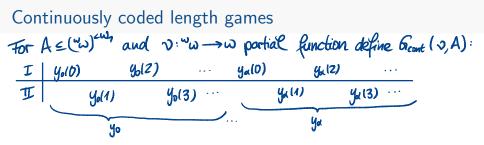
Continuously coded length games

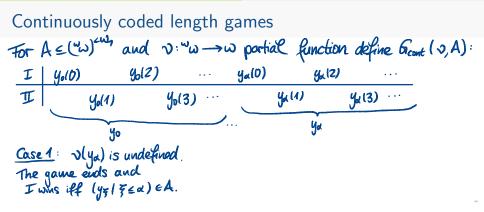
Sandra Müller (TU Wien)

Continuously coded length games For $A \in (\mathbb{W})^{\mathbb{W}}$ and $\mathbb{V}:\mathbb{W} \longrightarrow \mathbb{W}$ partial function define $G_{\text{cont}}(\mathbb{V}, A)$:

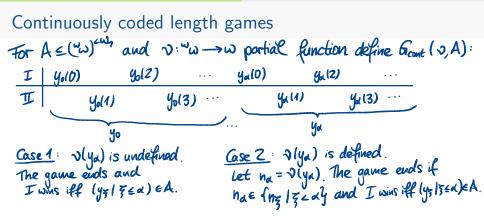
Sandra Müller (TU Wien)

Continuously coded length games For $A \in (\mathbb{W})^{(W)}$ and $\mathbb{V}: \mathbb{W} \longrightarrow \mathbb{W}$ partial function define $G_{cont}(\mathbb{V}, A):$ $\frac{I}{[Y_0(0)]} \frac{Y_0(2)}{y_0(1)} \frac{Y_0(3)}{y_0(3)} \frac{Y_0(1)}{y_0(1)} \frac{Y_0(3)}{y_0(3)} \frac{Y_0(1)}{y_0(3)} \frac{Y_0(1)}{y_0$

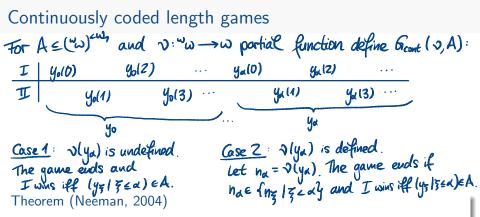




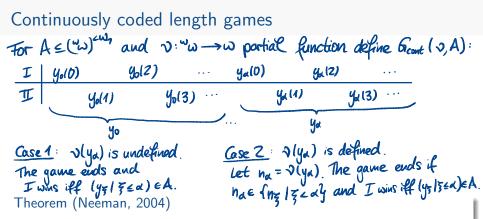
< 日 > < 同 > < 三 > < 三 >



イロト 不得下 イヨト イヨト



Suppose there is an iterable proper class model M, with a Woodin cardinal δ and a cardinal $\kappa < \delta$ that is $(\delta + 1)$ -strong in M, such that $V_{\delta+1}^M$ is countable in V. Then the game $G_{\text{cont}}(\nu, A)$ is determined for every ν in the class Σ_2^0 and every A that is $\langle \omega^2 - \Pi_1^1$ in the codes.



Suppose there is an iterable proper class model M, with a Woodin cardinal δ and a cardinal $\kappa < \delta$ that is $(\delta + 1)$ -strong in M, such that $V_{\delta+1}^M$ is countable in V. Then the game $G_{\text{cont}}(\nu, A)$ is determined for every ν in the class Σ_2^0 and every A that is $\langle \omega^2 - \Pi_1^1$ in the codes.

Is this optimal?

Sandra Müller (TU Wien)

As an example, we sketch the proof of the following result.

Theorem (Aguilera-M, 2020)

As an example, we sketch the proof of the following result.

Theorem (Aguilera-M, 2020)

As an example, we sketch the proof of the following result.

Theorem (Aguilera-M, 2020)

Suppose every game of length $\omega^2 + \omega$ with a Π_1^1 payoff set is determined. Then there is a model with $\omega + 1$ Woodin cardinals.

Part I

```
Play a game to get some

A \in R_{1}(IR) s.t. H_{1}^{\#}(A) \in Xists,

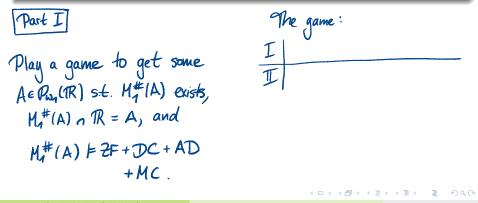
H_{1}^{\#}(A) \cap IR = A, and

H_{1}^{\#}(A) \not\models 2F + DC + AD

+ MC.
```

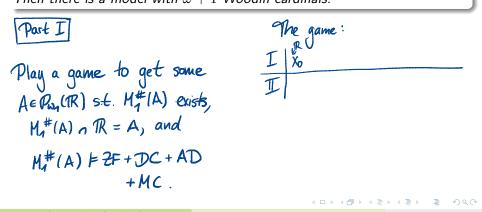
As an example, we sketch the proof of the following result.

Theorem (Aguilera-M, 2020)



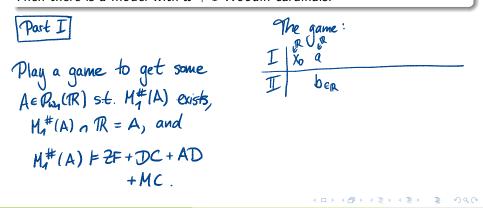
As an example, we sketch the proof of the following result.

Theorem (Aguilera-M, 2020)



As an example, we sketch the proof of the following result.

Theorem (Aguilera-M, 2020)



As an example, we sketch the proof of the following result.

Theorem (Aguilera-M, 2020)

Suppose every game of length $\omega^2 + \omega$ with a Π_1^1 payoff set is determined. Then there is a model with $\omega + 1$ Woodin cardinals.

Play a game to get some

$$A \in R_{21}(IR)$$
 s.t. $H_1^{\#}(A) \in R$
 $H_1^{\#}(A) \cap R = A$, and
 $H_1^{\#}(A) \models 2F + DC + AD$

+MC

The game:

$$I \xrightarrow{R} U \xrightarrow{R} x_1 \xrightarrow{L} x_3 \cdots$$

 $\overline{I} \xrightarrow{b_{R}} x_2 \xrightarrow{x_4 \cdots}$

• Image: A image A image: A

As an example, we sketch the proof of the following result.

Theorem (Aguilera-M, 2020)

Suppose every game of length $\omega^2 + \omega$ with a Π_1^1 payoff set is determined. Then there is a model with $\omega + 1$ Woodin cardinals.

Part I

Play a game to get some $A \in R_{u_1}(IR)$ s.t. $M_1^{\#}(A) \in R$ = A, and $M_1^{\#}(A) \models 2F + DC + AD$

+MC

< 日 > < 同 > < 三 > < 三 >

As an example, we sketch the proof of the following result.

Theorem (Aguilera-M, 2020)

Suppose every game of length $\omega^2 + \omega$ with a Π_1^1 payoff set is determined. Then there is a model with $\omega + 1$ Woodin cardinals.

Part I

Play a game to get some $A \in \mathcal{P}_{w}(IR)$ s.t. $M_{1}^{\#}(A)$ exists, $M_{1}^{\#}(A) \cap IR = A$, and

M#(A) ≥ 2F+DC+AD +MC. The game: I R is tonly tonly I Xo a Vo, X, ER Vy, X3 ... I ben X2 X4 ... I wins iff the vis code a theory Ts.t. models w of Tare

As an example, we sketch the proof of the following result.

Theorem (Aguilera-M, 2020)

Suppose every game of length $\omega^2 + \omega$ with a Π_1^1 payoff set is determined. Then there is a model with $\omega + 1$ Woodin cardinals.

Part I

Play a game to get some $A \in \mathcal{R}_{21}(\mathbb{TR})$ s.t. $H_1^{\#}(A) = \alpha i s t s$, $H_1^{\#}(A) = \mathcal{R} = A$, and

As an example, we sketch the proof of the following result.

Theorem (Aguilera-M, 2020)

Suppose every game of length $\omega^2 + \omega$ with a Π_1^1 payoff set is determined. Then there is a model with $\omega + 1$ Woodin cardinals.

Part I

Play a game to get some $A \in R_{1}(IR)$ s.t. $H_{1}^{\#}(A)$ exists, $H_{1}^{\#}(A) \cap IR = A$, and

> M#(A) ≥ ZF + DC + AD + MC.

As an example, we sketch the proof of the following result.

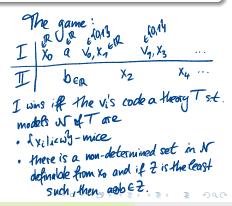
Theorem (Aguilera-M, 2020)

Suppose every game of length $\omega^2 + \omega$ with a Π_1^1 payoff set is determined. Then there is a model with $\omega + 1$ Woodin cardinals.

Part I

Play a game to get some $A \in R_{M}(IR)$ s.t. $M_{1}^{\#}(A) \in R$ = A, and

> M#(A) ≥ 2F+DC+AD +MC.



As an example, we sketch the proof of the following result.

Theorem (Aguilera-M, 2020)

Suppose every game of length $\omega^2 + \omega$ with a Π_1^1 payoff set is determined. Then there is a model with $\omega + 1$ Woodin cardinals.

Part I

Play a game to get some

$$A \in P_{0,1}(IR)$$
 s.t. $H_1^{\#}(A)$ exists,
 $H_1^{\#}(A) \cap IR = A$, and
 $H_1^{\#}(A) \models 2F + DC + AD$
 $+ MC$

Part II Use the model H1#(A) from Port I and translate it into a model with w+1 Woodin cordinals.

"Future theorem" (Gappo-M, 2024)

The following are equivalent (over ZFC):

- There is a canonical inner model with a top measure and a limit of Woodin cardinals λ such that the order type of Woodin cardinals below λ is λ.
- The games G(C) are determined for any C ⊂ ^{<ω1}ℝ that is <ω² − Π¹₁ in the codes.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

"Future theorem" (Gappo-M, 2024)

The following are equivalent (over ZFC):

- There is a canonical inner model with a top measure and a limit of Woodin cardinals λ such that the order type of Woodin cardinals below λ is λ.
- The games G(C) are determined for any $C \subset {}^{<\omega_1}\mathbb{R}$ that is ${}^{<\omega^2 \Pi_1^1}$ in the codes.

< 同 > < 三 > < 三 >

"Future theorem" (Gappo-M, 2024)

The following are equivalent (over ZFC):

- There is a canonical inner model with a top measure and a limit of Woodin cardinals λ such that the order type of Woodin cardinals below λ is λ.
- The games G(C) are determined for any $C \subset {}^{<\omega_1}\mathbb{R}$ that is ${<}\omega^2 \Pi_1^1$ in the codes.

- 4 回 ト 4 ヨ ト 4 ヨ ト

Idea: The plagers determine the length of the game during the play.

"Future theorem" (Gappo-M, 2024)

The following are equivalent (over ZFC):

- There is a canonical inner model with a top measure and a limit of Woodin cardinals λ such that the order type of Woodin cardinals below λ is λ.
- The games G(C) are determined for any $C \subset {}^{<\omega_1}\mathbb{R}$ that is ${}^{<\omega^2 \Pi_1^1}$ in the codes.

・ 同 ト ・ ヨ ト ・ ヨ ト

"Future theorem" (Gappo-M, 2024)

The following are equivalent (over ZFC):

- There is a canonical inner model with a top measure and a limit of Woodin cardinals λ such that the order type of Woodin cardinals below λ is λ.
- The games G(C) are determined for any $C \subset {}^{<\omega_1}\mathbb{R}$ that is ${}^{<\omega^2 \Pi_1^1}$ in the codes.

"Future theorem" (Gappo-M, 2024)

The following are equivalent (over ZFC):

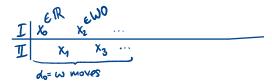
- There is a canonical inner model with a top measure and a limit of Woodin cardinals λ such that the order type of Woodin cardinals below λ is λ.
- The games G(C) are determined for any $C \subset {}^{<\omega_1}\mathbb{R}$ that is ${}^{<\omega^2 \Pi_1^1}$ in the codes.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

"Future theorem" (Gappo-M, 2024)

The following are equivalent (over ZFC):

- There is a canonical inner model with a top measure and a limit of Woodin cardinals λ such that the order type of Woodin cardinals below λ is λ.
- The games G(C) are determined for any $C \subset {}^{<\omega_1}\mathbb{R}$ that is ${}^{<\omega^2 \Pi_1^1}$ in the codes.



Let $d_0 = \omega$.

A 回 > A 回 > A 回 >

"Future theorem" (Gappo-M, 2024)

The following are equivalent (over ZFC):

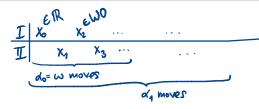
- There is a canonical inner model with a top measure and a limit of Woodin cardinals λ such that the order type of Woodin cardinals below λ is λ.
- The games G(C) are determined for any $C \subset {}^{<\omega_1}\mathbb{R}$ that is ${}^{<\omega^2 \Pi_1^1}$ in the codes.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

"Future theorem" (Gappo-M, 2024)

The following are equivalent (over ZFC):

- There is a canonical inner model with a top measure and a limit of Woodin cardinals λ such that the order type of Woodin cardinals below λ is λ.
- The games G(C) are determined for any $C \subset {}^{<\omega_1}\mathbb{R}$ that is ${}^{<\omega^2 \Pi_1^1}$ in the codes.

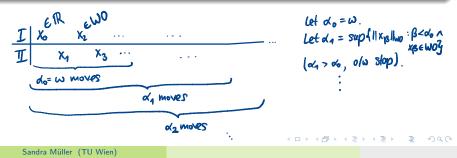


$$\begin{array}{l} (ef \ \alpha_0 = \omega \, . \\ Let \ \alpha_4 = \sup \left\{ 1 \| x_{ys} \|_{W0} : \beta < \phi \wedge \\ x_{\beta} \in WO_{2}^{2} \\ (\alpha_4 > \phi_6 \, , \ 0 / \omega \ s \phi_{2}) \right\} . \end{array}$$

"Future theorem" (Gappo-M, 2024)

The following are equivalent (over ZFC):

- There is a canonical inner model with a top measure and a limit of Woodin cardinals λ such that the order type of Woodin cardinals below λ is λ.
- The games G(C) are determined for any $C \subset {}^{<\omega_1}\mathbb{R}$ that is ${}^{<\omega^2 \Pi_1^1}$ in the codes.

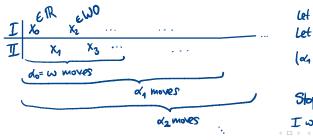


A new game

"Future theorem" (Gappo-M, 2024)

The following are equivalent (over ZFC):

- There is a canonical inner model with a top measure and a limit of Woodin cardinals λ such that the order type of Woodin cardinals below λ is λ.
- The games G(C) are determined for any $C \subset {}^{<\omega_1}\mathbb{R}$ that is ${}^{<\omega^2 \Pi_1^1}$ in the codes.



let do = ω. Let da = supfill×pilluo:β<do A xpe WOY (o(4 > 06, 0/ω slop). .

Stop the game at Udi, I wins iff (xys_1 (3< U.di) EC.

Long games Step 1: Fix a finite number n and play games of length w.n. Step 2: Fix a countable ordinal or and play games of length w.d. Step 3: Play games that end at a countable stage but which one will only be decided during the game. Step 4: Play uncountable games.

イロト 不得下 イヨト イヨト

Be careful: The determinacy of arbitrary uncountable games is inconsistent with ZF (Mycielski, 1964).

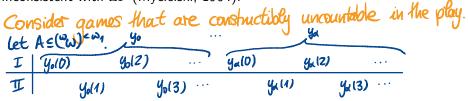
Be careful: The determinacy of arbitrary uncountable games is inconsistent with ZF (Mycielski, 1964).

Consider games that are constructibly uncountable in the play.

Be careful: The determinacy of arbitrary uncountable games is inconsistent with ZF (Mycielski, 1964).

Consider games that are constructibly uncountable in the play. Let $A \in \mathbb{C} \cup \mathbb{C}^{\times n_1}$. $I = y_0(0) = y_0(2) \cdots = y_n(0) = y_n(2) \cdots = y_n(0)$ $I = y_0(1) = y_0(3) \cdots = y_n(1) = y_n(3) \cdots$

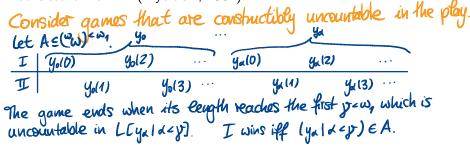
Be careful: The determinacy of arbitrary uncountable games is inconsistent with ZF (Mycielski, 1964).



Be careful: The determinacy of arbitrary uncountable games is inconsistent with ZF (Mycielski, 1964).

Consider games that are constructibly uncountable in the play. Let $A \leq (w) \leq w_1$. Yo $I = (y_0(0)) = (y_0(2)) \cdots = (y_a(0)) = (y_a(1)) = (y_0(1)) = (y_0(2)) \cdots = (y_a(1)) =$

Be careful: The determinacy of arbitrary uncountable games is inconsistent with ZF (Mycielski, 1964).



Be careful: The determinacy of arbitrary uncountable games is inconsistent with ZF (Mycielski, 1964).

Consider games that are constructibly uncountable in the play. Let $A \in (\mathbb{W})^{\times W_1}$. Yo $I = (y_0(0)) = (y_0(2)) \cdots = (y_a(0)) = (y_a(0))$

Theorem (Neeman, 2004)

Suppose there is an iterable proper class model with a Woodin cardinal that is a limit of Woodin cardinals and countable in V. Then all games ending at ω_1 in L of the play with payoff sets that are $\Im(\langle \omega^2 - \Pi_1^1 \rangle)$ in the codes are determined.

Be careful: The determinacy of arbitrary uncountable games is inconsistent with ZF (Mycielski, 1964).

Consider games that are constructibly uncountable in the play. Let $A \in (\mathbb{W})^{\times W_1}$. Yo $I = (y_0(0)) = (y_0(2)) \cdots = (y_a(0)) = (y_a(0))$

Theorem (Neeman, 2004)

Suppose there is an iterable proper class model with a Woodin cardinal that is a limit of Woodin cardinals and countable in V. Then all games ending at ω_1 in \underline{D} of the play with payoff sets that are $\partial(\langle \omega^2 - \Pi_1^1 \rangle)$ in the codes are determined.

Theorem (Woodin)

The following theories are equiconsistent:

- ZFC + all ordinal definable games of length ω_1 on natural numbers with real parameters are determined.
- ZFC + all games ending at ω₁ in L of the play with payoff sets that are ∂(<ω² − Π¹₁) in the codes are determined.

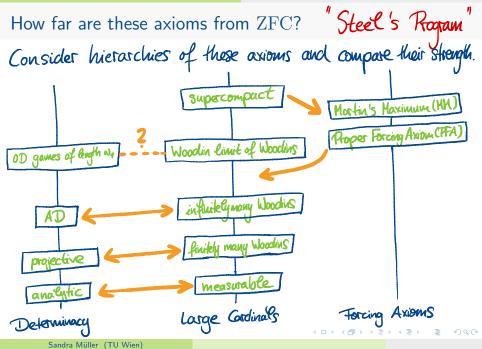
< □ > < □ > < □ > < □ > < □ > < □ >

Theorem (Woodin)

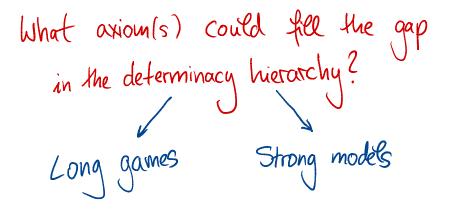
The following theories are equiconsistent:

- $ZFC + all \text{ ordinal definable games of length } \omega_1 \text{ on natural numbers with real parameters are determined.}$
- ZFC + all games ending at ω₁ in L of the play with payoff sets that are ∂(<ω² − Π¹₁) in the codes are determined.

Is Neeman's result optimal, i.e., are these theories equiconsistent with a Woodin Cimit of Woodins?



Two scenarios



Two scenarios

